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Non-linear waves i n  Plasmas and disk-like Galaxies 

The object of t h i s  paper i s  t o  draw a t ten t ion  t o  the f a c t  t ha t  

the  analogy between cooperative waves i n  plasmas and i n  systems 

involving gravi ta t ional  interact ion extends beyond the commonly 

explored (1)(2) domain of l inear  approximations. We s h a l l  show 

on a simple model(3) f o r  a disk-like galaxy, the  counterpart t o  a 

"nonlinear cold plasma". 

waves i s  (see f i g .  1 ) t h a t  even for inf ini tes imal ly s m a l l  amplitudes 

A charac te r i s t ic  feature  of the associated 

one may have a r b i t r a r i l y  large gradients and hence very strong bunching 

up of par t ic les .  For gravi ta t ional  a t t rac t ion ,  t h i s  may lead  t o  l o c a l  

i n s t a b i l i t i e s  gruwing at  much f a s t e r  r a t e  than predicted by the  l i n e a r  

analysis.  It a lso  turns  out t h a t  these nonlinear modes i n  general dis-  

play azimuthal asymmetries of t he  s p i r a l  type!4) It i s  thus expected 

tha t  t h e i r  introduction w i l l  have bearing on current endeavors on the 

exploration of s t a b i l i t y '  I-( 12> and of the nature of s p i r a l  a r m s  b3 > -  ( 18) 
of ga lac t ic  models. 

radial and nonradial, non-linear osc i l la t ions  of variable stars. 

Another application of the method would be t o  

0-9 >-( 24) 

However, a complete solution of t he  nonlinear problem i s  of course 

formidable even i n  t h e  simplest examples, and a t  one point or another 

one has t o  resor t  t o  some approximation procedures. We here propose 

therefore t o  introduce the method only as far as it can be car r ied  

exactly and merely t o  indicate the  possible approximation procedures 

which may then be taken i n  order t o  continue the solution. A more 

systematic a t tack  on the  l a t t e r  i s  hoped t o  be deal t  with i n  another 

paper, i n  conjunction with C. Cuvaj . 
I n  Part  I we s h a l l  re-formulate the Problem of a nonlinear cold 

plasma i n  a way which i s  somewhat d i f fe ren t  from previous formulations.* 

(see next page f o r  footnote) 



1 
I .  

Most of the r e su l t s  here obtained have been established, i n  portions, 

i n  a number of publications ranging over the past  8 or 9 years. 

However, our main r e su l t ,  equations (ll), (13), (19), which i s  par t icu lar -  

l y  convenient f o r  f a s t  i t e ra t ion ,  seems t o  have remained unnoticed. Also, 

the exact solution (23) f o r  the three dimensional case is ,  as far as we 

could ascer ta in ,  new. The main point i n  the present representation is  

t h a t  it works from the  start - and obtains the exact solutions - i n  the 

( 294 2Q 

Eulerian representatioil, wllereas other treatments use the Lagrangian 

representation i n  varying degrees. 

The convenient form (11) i n  which the Eulerian solutions are  

obtained should save much work which has often been l e f t  t o  e lectronic  

( 29) computers . 

* (footnote for  page #1) 
1957/58, while the author was a g r  du t e  student at  Br i s to l  University, 
England, but remained unpublished . T257 In  connection with the work of 
Part  I, the author wishes t o  thank Prof. D.  Bohm f o r  c r i t i c i sm and 
discussions, Prof. M.H.L. Pryce fo r  the hospi ta l i ty  at  the H.H. W i l l s  
laborator ies  and the N.S.D.I.R. of the  Br i t i sh  Government f o r  a grant 
at t h a t  period. 

The r e s u l t s  of P a r t  I were obtained i n  
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P a r t  I : Non l inea r  waves i n  a Plasma 

1.1. The eauations of a cold Plasma 

We consider the model of a negatively charged, continuous f lu id ,  

representing approximately a nondegenerate gas of electrons of mass m 

and charge e = - 1.1. 
uniform, s ta t ionary posi t ive charge d is t r ibu t ion  of charge density I nol 

whicqequal i n  magnitude t o  the average charge density no of t he  

electron f lu id .  We assume that; the f l u i d  is  cold, i . e . ,  at each point 

i n  space, x, only one v d u e  of veloci ty  ex is t s ,  v (x, t )  (as far as the  

hydrodynamical description i s  single-valued). 

convective derivative for  the f lu id ,  E(x, t )  the e l e c t r i c  f i e l d  produced 

at x, t by all charges present , p (x, t ) + no the density of the electron 

f lu id .  If we assume the veloci t ies  t o  be slow enough f o r  magnetic 

"his f l u i d  i s  immersed i n  a background of a 

'S 

4 4 4  

Let D / B  be the 
4 4  

4- 

of the model are:  

( l a  1 

effects to be negligible,  the bas i s  equations 

Dv 
m s = e g ,  

div E = 4 IT p (p > 0 means def ciency of e lectrons) ,  ( l b )  

( I C  1 

(IC) is  the  t h i r d  Maxwell equation i n  the  absence of magnetic f i e l d ;  

i t s  div gives the conservation equation for p + no.' Taking D/B of 

( l a )  one obtains 

and by eliminating p from ( l b )  and (IC) one obtains 



1 ,  

I .  I 
I 

F'rom these two equations one obtains, by subtraction 

w2 = 4 n no e/m (3) P 
where 

This i s  an exact non-linear equation f o r  +,t) alone. 

equation for p ,  which, however, involves x too,  can a l so  be 

obtained: the conservation equation D p / D t  + (no + p ) div x = 0 can 

be wri t ten i n  the form 

~n 

D -An (p + n ) = d i v x .  D t  0 

If the  D/Dt of t h i s  equation i s  taken, and 

- D d i v x  = div - T r ( S  2 ) 
D t  E 

is  used, where Tr is  the  t race  and S i s  the  "dissipation matrix" 

S =  

one obtains 

2 2 D2 - an (p+n,) + > p = Tr(S ) 
n D t 2  0 

1.2. The exact solution for the  one-dimensional case. 

I n  the one-dimensional case, (4) and (5)  reduce t o  



. * '  2 2 

O P  + D An(p + no) D An (p + n ) w 
p =  0 ,  - 

D t Z  D t  0 

because i n  one dimension x'V- = ,v div and 
Tr (S2)  = (av/ax)* = [ (l/p+no)Dp/Dt12=[D An(p+no)/Dtl 2 

by v i r tue  of the conservation equation f o r  p . (7) can be fur ther  

simplified: 
0 

(6) seems t o  have been obtained first by Polovin e t  al 0') (from 

the one-dimensional equations of motion) who, however, did not attempt 

an exact solution. Sturrock (31) obtained the  equivalent of (3) and 

(5) by working from the start i n  the four ie r  representation, and he 

solved them by an approximation procedure i n  t h a t  representation up 

t o  the second gpproximation. 

We shal l  f irst  look f o r  complex solutions of (6). Led by the 

i analogy t h a t  % - 
l i nea r  (but non- cont inuous ) plasma , ( 
denominator of Q1z as the  f i r s t  order expansion of exp(-&-,v /w ), and 

one i s  thus l e d  t o  t r y  solving (6) by 

exp ( -  iS.3 )/(1 - - k-vi)solves the  case of 
w 

one may consider the 
i 

P 

(8 1 i ( k x  - w p t )  e 
v(x,t) = (;Ye > 

where (31 is  a constant. Indeed, since 

<a/at++x) exp [i(k - w p t ) l  = - i ( w  - h) exp Ci(h - w p t ) l y  

the  D/Dt  of (8) gives 
P 

i . e .  , k D v  i (W - k v ) v + , -  - DV - = -  
D t  V y  

P D t  P 

D v /  - Dt \wp - iwj = - i w (w - iwj  v, 
P P  



SO t h a t ,  as long as w # kv, P 

- D v + i w  v = o .  
D t  P 

Eut since 
- 

D'v 2 v = ( - + i w ) ( -  D D - i w ) v ,  
P D t  P D t  

- + w  
D t 2  

(8) solves a l so  the equation (6).  

since v appears a l so  on the right-hand s ide.  

have v rn 

For larger  k v / W  

i n  a way which depends on i t s e l f ,  i . e . ,  i n  a typ ica l  non-linear 

way. 

(8) defines v only implici t ly ,  

For small kv/w we 
P 

exp (i(kx-u t )  ), i . e . ,  we nave the l inear  soiution. 
P 

the fac tor  exp (kv/w ) modulates the amplitude P' P 

(8) can then be solved by an i t e r a t ion  procedure, s t a r t i n g "  

with the l i nea r  solution. 

the form z exp z = a,  where z = ( -kv/w ) and 

a = *(-kY/w ) exp [ i (kx-w t)]. 

f o r  over a hundred years by various mathematicians (see W r i g h t )  (32 ) 

and t h e i r  r e su l t s  can be used t o  obtain f'urther physical properties.* 

However, (8) can eas i ly  be thrown into 

P 
This equation has been investigated 

P P 

A s  can be seen by straightforward d i f fe ren t ia t ion ,  the  solut ion 

(8) can be generalized: CY. and k.  being arbi t rary,  a l so  
1 1 

v(xlt)  = Uie i ( k i  x - w p t )  ,(kiV/W,) 

is  a solution of (6).  

So far ,  we have disregarded the f ac t  t ha t  (8) i s  a complex 

solution, whereas v is t o  be r ea l .  Hence, we sha l l  have t o  modify 

* I am indebted t o  
f ac t  t ha t  the solution (8) can a l so  be obtained i n  the following m y :  

Assuming a plane-wave solution v = v(5) where 5=kx - w t we 

A.A. Cottey for drawing my a t ten t ion  t o  the 

P 



our method of solut ion somewhat. By taking the D / D t  of (6) and 
~ 

2 2 2  
P 

using E = ( m / e )  Dv/Dt  we notice t h a t  E too  fulfi l ls  D E/Dt W E = 0. 

To obtain a r e a l  solut ion for  both, we write 
~ 

kE 
2 
P 

v = CY cos (kx - w t + - + e ) ,  
p w  

kE 

P 

E = w CY sin (kx - (u t + -2 + e ) ,  
P p w  

where t, is a constant phase fac tor .  

Indeed (denoting D f / D t  f r o m  now on by f ) ,  

; = ( w  - k v ) ;  E - -  H E  
3 ,  

*P 
P 

7 

E k& - = - (wp - kv) v + -  2 ’  
W 

W 

P P 

so  t h a t  as long as W # kv P 

2 
P 

E = - W  v 2 
E + W  E = O  

P 
giving 

h 

( l l b  ) 

L 
i f + W  v = o  

P 
+ = E  

Hence (11) solves our bas ic  s e t  of equations (1). Again it can be 

shown t h a t  also 

v = 7 CY cos (k.x - (u t + 2 + B i ) ,  
P 2 1 i  1 

u) 

P 

E = w c C Y .  s i n  (k.x - W t + kiE + e i ) ,  
p (u7 

P i  1 1 

P 

solves (1). 

(11) can be condensed in to  the  complex f o r m  (where v and E are  



now r e a l )  
i E  i (kx - w p t )  i k E 

v+ ,=c%e  ewz 
P P 

(14) can be wri t ten 

w = Qe - w p t )  e (kw/lup 1 

The implicit  solution ( l l b )  for E i s  independent of v; denoting 
2 

P P ’  P 
the  phase kx = W t by 5 ,  we have E = W Cy s i n  (5  + kF,/w ). 

The graphic representation of E(S)/a  i s  a sine-curve which is 

t i l t e d  t o  the r igh t ,  as shown i n  f i g .  1: 

If cyk/w = 1 the 
P 

der ivat  ive a E/a 5 

becomes i n f i n i t e  a t  the 

points 5 = 0 and i f  

cyk/w > 1 the  graph 

becomes a t  f irst  

three-valued i n  a 

cer ta in  range, and if 

(a) 0 - L  1 +--* t = ka+ 

(b) a s > 1  
P :I qx+ 

I I 

~ 6 . 7 .  wphrad rrpresentation of € = a  sin (kx-i+t+ g 
CYk/wp i s  fur ther  9 2  

increased, it becomes 

5,7,9 ...- valued. This Fig.#. Graphical representation of 

indicates t ha t  shock 

conditions are  obtained 

when a /U) = l , . i . e . ,  

continuity i s  destroyed. 
k P  

E = cy s i n  (kx-u, t + kE ) 
P -  W 2 

P 

By taking k2 = -k and al = cy i n  (l3), one ve r i f i e s  t h a t  a l so  2 
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v = COS W t COS k (X + T), E 
W P 

P 

E = w CY s i n  W t cos k (x 
P P 

are  solut ions,  and by "superposing" 

i n  the  above sense, one obtains the  

of (1) i n  the form 

E 

P 

E = w f ( x  + -) s in  (w t 
2 P u P 

E 

P 

v = f ( x  + 7) cos (w t + 
P W 

E 

P 

+ --& 
w 

these solutions f o r  d i f fe ren t  k ' s  

general one-dimensional solut ion 

+ e > ,  

where f is  an a rb i t r a ry  function. 

straightforward d i f fe ren t ia t ion .  

these solut ions physically. 

This can a l s o  be ve r i f i ed  by 

We s h a l l  now proceed t o  in t e rp re t  

2 Integrat ing + w v = 0, we have 
P 

2 z 
- D ; + w  ( x - x ) = o ,  

P 0 D t  

where Dxo 
- = 0. D t  

Here x = x ( t , x  ) i s  the  posi t ion at  time t of a fluid-element, whose 

equilibrium posi t ion is  x . The various elements execute harmonic 

osc i l l a t ions ,  each with another center and another maximum anrplitude. 

These centers and mpl i tudes  a re  a rb i t r a ry  (except f o r  ce r t a in  contin- 

0 

0 

u i t y  conditions),  and therefore the elements may crowd up, a t  various 

phases of t h e i r  motion, i n  a way which gives the  space functions p (x , t )  

and v(x, t )  t h e i r  non-linear character. 

(17) a l so  explains why (16) i s  a solution: since d = eE and 
3 .  

E: -W'  (x-xoj, the  argument x + E / w ~ )  mfius (D/Dt)(x+(E/w'))=o, 
P P P 



and therefore it plays the  role of a constant when (16) is  differen- 

t i a t e d  by D/Dt .  

of p a r t i a l  d i f f e r e n t i a l  equations, D / D t  is  a d i f fe ren t ia t ion  i n  a 

charac te r i s t ic  direct ion i n  the space x,t ,E,v ( 3 3 )  and the  solut ion (16) 

i s  e s sen t i a l ly  wri t ten i n  terms of the parameters ct = x + (E/w ), 8 = t  

along the  charac te r i s t ic  l ines .  

used i n  the  present case by Dolph. 

From the point of view of t h e  theory of c h a a c t e r i s t l c s  

2 
P 

The method of charac te r i s t ics  has been 

(28 1 

2 
P 

Since x + (E/U ) = xo with Dxo/Dt=O, ( l3b)  can a l so  be wri t ten 

i n  the  form 

x ( t , xo )  = xo + A ( x ~ )  s i n  w t + B ( x ~ )  COS w t. 
P P 

This i s  the  solut ion i n  the  Lagrangian representation; it first 

appeared i n  l i t e r a t u r e  i n  a paper by Dawson ( 2 6 )  who obtained it from 

physical. considerations: i f  a f l u i d  p a r t i c l e  i s  displaced by x - xo t o  

t he  r igh t ,  say, and i f  overtaking of one p a r t i c l e  by another is  excluded, 

it will f e e l  a res tor ing  force ( -  w 

t h e  amount of negative charge on the  l e f t  has not changed, but the  

amount of background charge has increased by -no(x - xo) ). 

2 )(x-xo) coming from t h e  l e f t  (since 
P 

Before we proceed t o  the three-dimensional case, we should l i k e  

t o  mention some more properties of t he  one-dimensional case. 

1) Equation (7a) for p can be solved straightforwardly i n  the  

frame ( i . e . ,  i n  t he  Lagrange representation of t he  f l u i d ) :  m u l t i -  
xO 

plying (7a) by 6 we f ind  the f irst  in t eg ra l  
r) c 

fi2 + w2  p 2  + w~ p 3  = constant, 
P 3 T  

II 
0 

which shows the charac te r i s t ic  behavior for non-linear osc i l la t ions :  if  

t h e  p' term were absent, the  corresponding curves i n  p 6 -space would be 
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e l l ipses ;  the p 3  -term d i s to r t s  these e l l i p ses  towards negative values 

of p so tha t  the maximum excess of electrons i s  greater  than the maximum 

electron deficiency. 

2 
P 2 )  Multiplying E + w v = 0 by E and integrating, we obtain 

This expresses the  energy con- 2 E2 + W 2  v2 = h2, where Dh / D t  = 0. P 
servation per par t ic le .  Conversely, we could have obtained our 

2 2 2 2  2 
P 

solution (11) from t h i s  conservation equation, since E /h SW v /h = 1 
2 2 2  2 2  admits E = h s i n w  t, W2 v2 = h cos W t .  

P P P 

3 )  The question natural ly  a r i s e s ,  whether our solution can be 

generalized t o  include a l so  thermal motion. As a first  s tep  i n  tha t  

direct ion one might think of the beams-method of B o b  and Gross. 04 ) 

One is thus l e d  t o  consider the case of two charged f lu ids ,  p 1’ v 1’ E 1 and 

p ,v ,E superposed on the  same background n . Both produce the f i e l d  

E = El + E2 through 

2 2 2  0 

div ( E ~  + E ) = 4 (p, + p 2  - no) 2 

(p i  i s  now the  t o t a l  charge density of the i ’ t h  f lu id ,  and not i t s  

excess over no); they f.lllfill separate conservation equations 

+ div p2v2 = 0,  a p l  + div plvl= 0 ; at at 
a p2 

and they axe driven by the  t o t a l  f i e l d  

- E + E2. a “2 av2 
at El + E2 ; at + v 2 a x -  1 

However, no simple solution t o  these equations, corresponding t o  

the  one-fluid case, was found. Also the  method of charac te r i s t ics  



2 2 equations are  2 = - ce, (x - fl)  - w (X - f2)  where (af,/at)+vl(afl/ax)= 0 
1 P 1  P 1  

and (af,/at) + v2(af,/aX) = 0. 

is  subject not only t o  a res tor ing force towards a constant center f,, 

mus, the p a r t i c l e  x of the f irst  f l u i d  1 

~ 

A 

but a l so  t o  a res tor ing force towards a varying center f2. The varying 

values of f axe the  centers of the pa r t i c l e s  of the second f l u i d  which 

the  first pa r t i c l e  passes on i ts  way. The motions of the pa r t i c l e s  axe 

2 

therefore coupled i n  a complicated way and no simple solution should be 

expected . 
1.3. Some exact solutions of the three-dimensional case 

O u r  r e su l t s  f o r  the three-dimensional case, i . e . ,  f o r  the  

solution of ( 3 ) ,  can be s ta ted very shortly:  A l l  the solutions (ll), 

(15), (16), (17), (18), hold a l s o  f o r  the three-dimensional case; the  

more general solutions (10) and (13), however, do not hold a ~ ~ y  longer, 

except f o r  some extreme cases of paral le l ism or perpendicularity of 

the corresponding modes. 

We s h a l l  prove t h i s  f o r  t he  solution ik-2 - w p t )  e'i(k*k)/ w 2 . i E  

P 
v + r = a e  P 

We have 

5s 

2 P i 8 P  W 

i. + 2 = - i ( w  - k*v)(y + ar ) + - 
P --  P W - 

P 

The r e a l  pa r t  gives 

and the imaginary pa r t  gives 

This means tha t  k is  p a r a l l e l  t o  2, and hence (&*E) - -  v = (&OX) 3 - 



4 

. 
and 

Inserted in the  i -equation, t h i s  gives .j = E. 

can be seen t o  vanish f o r  (19) since,  as a simple calculation shows, both 

terms give w (&*d(l - &*v& ))x. 
E = - w v, 2 = 3 q.e.d. 

which is  of the  plane-wave form w i l l  remain so, by t h e  conservation of 

the circulat ion.  On the  other hand, plane-wave modes of d i f fe ren t  

But k*z)(DvvDt)-x div(DdDt) 

The system (1) reduces therefore t o  
P P 

2 
P -  

This r e s u l t  should have been expected: a mode - 

directions w i l l  in te rac t  and w i l l  d iss ipate  t h e i r  energy by excit ing 

all the  other plane-wave modes. This f ac t ,  which is  indicated by the ~ 

2 (31 ) Therefore dissipation* -term T r ( s  ) i n  (5) ,  was proved by Sturrock. 

the superposition property (10) w i l l  no longer hold. 

v = 5: a,. cos si  a n d 2  = w 

I 

Indeed, 

C a. s i n  si: w i l l  s t i l l  be a solut ion of 
1-1 P i  1 5 

2 
P -  

= 4 v and - -  = E but now (yx) D d D t  - 1 div (WDt) f 0. - 
It i s  qui te  d i f f i c u l t  t o  obtain exact 'solutions in three-dimensions 

f o r  which the right-hand s ide of (3) does - not vanish. 

t i on ,  which w i l l  not be entered here, l e d  us t o  expect t h a t  t he  "Ansatz" 

Various considera- 

v = x (al cos $ - a 

E = it = S (a, 
- 5  -1 -2 -1 

s i n  $), -2 - 
( 2 0 )  

cos 9 - a, s i n  $) - x j 3  (a s i n  j 3  +q cos $), 

would lead  t o  a solution, where X ( x l t )  and $(xlt) are  sca la r  f'unctions 

t o  be determined by the equations ( 2 ) .  This can be demonstrated i n  

2 * T r ( s  ) appears a l s o  i n  t'ne entropy-relation f o r  viscous f lu ids ,  
zf . , c . g . , L&Zb , YI&-G*Yi&iics. 



some simplified cases. For instance, i f  the assumptions 

0, 
DX 
D t  
- =  

itre made, one obtains fo r  X and $ the  following equations: 

at a (x?) = 0, 

'2 Dc PI (22) 
w? - $ - x Dt = x k1 s i n  +g2 cos $) *  I($), P 

where 5 = CY sin $ + % cos and D c / D t  = a/& + &-V). 5 -1 
2 '2 The second of these equations is  separable, DG $ /(WP - $ ) = (1/X) Dt 

and gives 3 = tgh (w / X ) ( t  - to), where DG t o / D t  = 0. 
P 

If it i s  assumed tha t  to is  a pure constant, one obtains 
W 

$ = X An cos h $ (t-to) + flo, with Bo = 0.  

This provides a spec ia l  exact solut ion of (3),  f o r  which the right-hand 

s ide of (3) i s  not zero. 

t o  (1/2) w t ) .  

following lemma (did can easi ly  be proved), may serve as a time- 

saver: 

It should be noted tha t  f o r  2 + a, fi tends 

I n  attempting t o  f ind  more general solutions,  the  
P 

If g ( h )  andx(h )  are a solution of the  s e t  (2)  where h=h(x,t,Z) i s  

any f'unction, then the right-hand s ide of (3) vanishes f o r  t h i s  

solution, %.e., (2)  reduces t o  

e *  2 e - E + a  x = O , i = - E .  m -  P m -  



Part 11. Nonlinear density waves i n  a disk-model f o r  a galaxy 

II.1.Discussion of the model and a general physical picture  of  the modes. 

The model of an inf ini tes imal ly t h i n  disk of matter, whose pa r t s  

a re  subject only t o  mutual gravi ta t ional  a t t r ac t ion  and t o  centrifugal 

forces,  has frequently been used t o  represent the s ta r -d is t r ibu t ion  i n  

SO-galaxies and f o r  t he  major portions of all ordinary s p i r a l  galaxies. 

Especially during the l a s t  2-3 years, the  question of the grav i ta t iona l  

i n s t a b i l i t i e s  ( 

arms (13)-(18) has received much at tent ion,  whereas previously e f fo r t s  

)-(12) of such disks and the poss ib i l i t y  of s p i r a l  

were directed mainly a t  finding consistent dis t r ibut ions of mass, 

poten t ia l  and angular velocity over such disks. (35  1- (41) 

Such models seem t o  be qui te  r e a l i s t i c  because of the  high (- 1O:l) 

degree of f l a t t en ing  observed.in such galaxies; because it now appears 

t h a t  i n t e r s t e l l a r  matter makes only a few percent of t h e i r  t o t a l  mass; 

because s t e l l a r  encounters are too  r a re  t o  make consideration of co l l i s ion  

necessary, except a t  the  center, and because magnetic forces seem t o  be 

smal l .  The only other factor which need be considered i s  the random 

motion of the s t a r s ;  t h i s  is  a s t ab i l i z ing  fac tor  which introduces a 

lower l i m i t  t o  the  charac te r i s t ic  lengths of i n s t a b i l i t i e s ,  but may 

otherwise be l e f t  out. ( 5  ) 

Mestel (42) divides disk-like galaxies roughly in to  two classes:  

those l i k e  M 31 or our m whose ro ta t iona l  ( l i nea r )  velocity,  V ( r ) ,  

i s  roughly uniform over a wide range of distances from the centera, and 

* (quoted from (42) ): "According t o  Kwee e t  al., 
a value of 200 km/sec is correct [ i n  our galaxy] t o  within 12  or 13 
percent over the range of 1.9-8.2 kpc.; between 2.93 and 8.2 QC, a. 
value of 210 km,/sec is ror rpc t .  t.n z?xxt 7 p e r c e ~ t . "  
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those whose angular velocity,  n ( r ) ,  i s  roughly uniform (solid-body 

ro ta t ion) .  I n  a careful mathematical analysis,  Hunter ( 41 inds t h a t  

these two cases are  only the  two extreme ends (with n = for the  

V = const-case and n = 1 f o r  0-const)of a whole chain, Vn, fl of 

models, i n  which the  density functions a,n(r) are proportional t o  

the m-n-th associated Legendre polynomials c(5) of 5 = /I- - -2 

( the var ia t ion with the azimuthal angle 8 being given by a f ac to r  

n 

t 21 r 

RO 

ime 
e 1. 

We s h a l l  here be concerned with the  case n = 1, i .e., (taking 

the  disk t o  be i n  the x,y-plane with polar coordinates r , e )  
FGM 1/2, 

= (-3) 
2R0 

where G i s  the gravi ta t ional  constant, M the t o t a l  Mass of the  disk 

and R 

disk,  can be found by equating the  grav i ta t iona l  force per un i t  m a s s  

i t s  radius. Y ,  the gravi ta t ional  po ten t ia l  i n  the plane of the 
0 

i n  the  plane, 

-+ ay  
g = z =  r 

2 t o  minus the cen t r i f iga l  force per un i t  mass, n r: 

giving 

TMG g = - -  
2R: 

(3) 

where we used Hunters choice of integrat ion constant. The d e n s i t y a ( r )  
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I ' .  4 4  

can - not be found from t h i s  by taking the planar V-G, since the mass 

element i n  question sends for  e-l ines also i n  the  z-direction (perpen- 

dicular t o  the disk) .  

t o  have been found f irst  by Wyse and Mayall ( 

eous oblate spheroid: 

The density d is t r ibu t ion  f o r  t h i s  model seems 

as a l i m i t  of a homogen- 

A galaxy model of t , h i s  kind may therefore be considered as t he  

f i n a l  stage of collzpse of a "primeval" uniform spherical  mass d i s t r i -  

bution which rotated about i t s  z-axis and therefore offered no counter- 

force t o  the f la t ten ing  i n  tha t  direction (as i n  the  disk case , we 

are  j u s t i f i e d  i n  neglecting pressure forces) .  

resul ted only if  an additional collapse, i n  the  plane, of mss towards 

Case n = 03 would have 

the center of the  disk, had taken place. 

We take the  model given by equations (1) t o  (7),  i n  which gravi- 

t a t i o n a l  p u l l  and c e n t r i m a l  force balance each.other, as our 

unperturbed disk ("equilibrium disk").  This would correspond, i n  the 

electron plasma case of Pa r t  I, t o  a homogeneous electron-f luid 

dis t r ibut ion,  i n  which the  forces from the negative and posi t ive 

charges balance each other at each point.  We saw i n  the plasma case 

t h a t  a deviation from homogeneity tends t o  correct i t s e l f ,  producing 

a wave-like motion, the non-linear character of whose basic modes i s  

depicted by Fig. 1 of Part  I. We a lso  saw there  tha t  one may 

understand t h i s  behavior i n  terms of the individual motions of the 

"part i c les"  ( f l u i d  elements ) , i . e., i n  the Lagrangian picture  : A 

p a r t i c l e  displaced from i ts  equilibrium posi t ion w i l l  f e e l  an excess 

of posi t ive charge over the negative charge, pul l ing it back. Similarly 

i n  our case, a pa r t i c l e  perturbed t o  a la rger  r w i l l  f e e l  an excess 



of gravi ta t ional  p u l l  towards the center over the centr i fugal  force 

( the  l a t t e r  2-ecreases whereas the former increased because 

of the greater mass now enclosed by the new c i r c l e  r). The pa r t i c l e  

w i l l  be pulled back, acquiring momentum on the way, whereby it over- 

shoots i t s  mark and the process reverses. Thus, osc i l la t ions  are  s e t  

up, with a typ ica l  frequency which corresponds t o  the plasma frequency 

of Part I. However, an osc i l la t ion  i n  the  r direct ion must be acconrp- 

anied by an osc i l la t ion ,  which i s  90' out of phase, i n  the  8 direction: 

A s  the pa r t i c l e  swings out t o  la rger  r ,  i ts  8 motion has t o  slaw down, 

i n  order t o  keep the angular momentum of the pa r t i c l e  constant, and, 

conversely, it must accerate while the p a r t i c l e  swings inward. Thus, 

instead of being an osc i l la t ion ,  the perturbed motion of the p a r t i c l e  

i s  i n  r e a l i t y  a c i rcu lar  motion, about the t i p  of i t s  equilibrium 

position-vector, which l a t t e r  ro t a t e s  with the  disk. 

* 

As i n  the plasma case, we may, f o r  d i f fe ren t  pa r t i c l e s ,  choose 

a r b i t r a r i l y  re la ted  amplitudes and i n i t i a l  phases f o r  t h i s  c i rcu lar  

perturbation-motion. By choosing cer ta in  simple periodic re la t ion-  

ships between the amplitudes and phases of different  pa r t i c l e s ,  one 

obtains the basic  "modes" of the  density waves produced thereby. 

Since it wi l l . ,  i n  general, happen tha t  the pa r t i c l e s  w i l l  bunch up, 

i n  a nonlinear way, a t  various regular intervals  of space and time, 

one w i l l .  f ind  tha t  the  modes so defined have the typ ica l  non-linear 

character of Fig. 1, Part I, even before we take in to  account the 

grav i ta t iona l  e f fec t  of these density waves i n  flrrther perturbing the 

motions of the par t ic les .  

This type of nonlinearity, which is  obtained on the assumption 

of an unperturbed Force l a w  acting on ?a r t i c l e s  (which i s  a good 

* Since we are  discussing r ad ia l  osc i l la t ions ,  we assume t h a t  the 
-- - p a r t i c l e - i s  perturbed i n  the  r ad ia l  direct ion only, i . e . ,  the angular 

momentum - n r2 remains unperturbed; hence the c e n t r i m a l  force,  - n2r, 
changes l i k e  l/$. 

-- - ._ - 
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I . assumption as long as the  perturbation is  small) w i l l  be ca l led  

"kinematic nonlinearity".  

e f f ec t  of the  perturbed density on the  motions of t he  p a r t i c l e s  

which produce t h i s  density perturbation, w i l l  be ca l led  "dynamic 

nonlinearity". In  retrospect,  a l l  nonl inear i t ies  found on the  one- 

dimensional cold plasma case were s t r i c t l y  of t he  kinematical type; 

t h a t  they could not be anything e l se  follows immediately from t h e  

f a c t  t h a t  Coulombs l a w  i n  one dimension gives a force t h a t  i s  

The nonl inear i ty  resu l t ing  from the  

t 

independent of distance; hence bunching up of p a r t i c l e s  w i l l  have 

no fur ther  e f fec t  on other par t ic les .  

Ow: task i n  the  present model is  therefore  considerably more 

d i f f i c u l t ,  as we have t o  take i n t o  consideration a l so  t h e  dynamical 

nonl inear i t ies .  However, the discussion of t he  kinematical non- 

l i n e a r i t i e s  i s  of considerable value i n  i t s e l f  because it c l a r i f i e s  

t he  framework upon which a more complete nonlinear theory has t o  be 

b u i l t ,  by providing t h e  form of the  basic  modes relevant t o  such a 

theory, and by providing a much more su i tab le  s t a r t i n g  point t o  an 

approximation hierarchy (such as a perturbation s e r i e s ) .  ( I n  t h i s  

sense t h i s  is  analogous t o  "renormalized" pa r t i c l e s  providing a much 

b e t t e r  s t a r t i n g  point than ''bare" pa r t i c l e s  i n  quantum f i e l d  theory. ) 

The main object of the  present pzper i s  t o  s e t  up such a kinematical 

framework; it w i l l  be l e f t  t o  l a t e r  work t o  carry out some of the  

dynamical p a r t  of t he  program, although indications w i l l  be given i n  

Section 4 of t h i s  paper as t o  possible ways of a t tack  on the  dynamical 

problem. 

The way i n  which t h i s  object w i l l  be car r ied  out w i l l ,  i n  a sense, 

be reverse t o  the  log ica l  development i n  Part  I. We s h a l l  start, i n  

Section 11.2, with the  discussion of t he  individual motions, i . e . ,  with 

the  Lagrangian p ic ture .  I n  Section 11.3 we s h a l l  then eliminate the  



The motion of a per-turbed point i n  a uniformly ro ta t ing  f l a t  disk 

2 r 
of densi ty  0 = const J1 - - 

k *' 1,2,3,. . . axe consecutive posi t ions of 
0 t h e  unperturbed point ;  

1" ,2",3", . . . are the  corresponding posi t ions of the  perturbed point.  

Tie broken c i r c l e  would be described i f  the osc i l la tory  perturbation 

were of frequency R instead of 2 Q .  
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Lagrangian var iables  and obtain the nonlinear waves for the f i e l d  G, 

density p and ve loc i ty  v, i . e .  , t h i s  w i l l  be i n  the  Eulerian picture .  
-t 

Final ly ,  i n  11.4, we s h a l l  indicate the treatment of dynamical non- 

l i n e a r i t i e s .  

11.2. The perturbed individual-motions of p a r t i c l e s  i n  the disk 

(a)  The equations o f  motion 

In  t h i s  sect ion we s h a l l  develop the d e t a i l s ,  i n  t he  Lagrangian 

representation, of the  general physical  p ic ture  of nonlinear modes 

introduced i n  Section 1. 

with equations (1) - (7) ,  the  motions of p a r t i c l e s  i n  the disk w i l l  be 

Using the  notat ion introduced i n  connection 

governed by the  Hamiltonian 

where 

and pr, p6 are  the r a d i a l  and azimuthal canonical momentae. 

equations of motion, 

The 

. Pr  . pQ , pr = -  - CYr 
m r  3 

r = -  
m 

give 

2 p8 /mr3 i s  t h e  centr i fugal  force; - 2P ?/r3 is the gyroscopic 
(3 

force  which produces an osc i l l a t ion  i n  the  0-direct ion i f  there  is  an 

o s c i l l a t i o n  i n  the  r direct ion.  To t r e a t  o sc i l l a t ions  i n  the r direc- 

t i o n ,  we define an equilibrium radius,  re, by 



( b )  Small r a d i a l  osc i l la t ions  

We may define 

6 r = r - r  (14 1 e 

and i n  t h i s  sect ion we s h a l l  assume t h i s  t o  be small enough f o r  6r2 t o  

be negl igible  i n  the  force  q u a t i o n s .  

might as wel l  solve equations (10)-(13) exactly,  but the l i n e a r  

(We s h a l l  l a t e r  see t h a t  we 

treatment is  of i n t e r e s t  f o r  several  reasons.)  Expanding (10) 

about r we obtain 
2 

4P@ 6 r = -  3 6r 
2 e' 

m6p = - (CY + -T) 3P3 
mr mr e e 

i.e., 6r o s c i l l a t e s  harmonically, 

6r = A COS ( w t  + e )  (16 1 
with frequency 

the  
i . e . ,  t h i s  i s  twice the  frequency Q a t  which/disk ro t a t e s .  

8 = pii/mr2 t o  f irst  order i n  6 r ,  we obtain 

Expanding 

so t h a t ,  by inser t ing  (16) and integrat ing,  

e = % t  - -  A r s i n  ( w t  + e )  
mr e e 

The f irst  park of (19) describes the uniform ro ta t ion  of the 

disk,  with angular frequencyo. 

i n  the  azimuthal d i rec t ion  which i s  90' i n  advance of the.  o sc i l l a t ion  6 r .  

The second par t  i s  an osc i l l a t ion  

The maximum amplitude of re68  is  the  same as f o r  6r. Hence, i n  the  



-22- 

the two components of the osc i l la t ion  make a clockwise ro ta t ion ,  of 

radius A and of twice the frequency as that  of the  disk.  A s  seen i n  

the laboratory-frame, the  point describes the elongated e l l i p s e  i n  

Fig. 2. Its distance from the center i s  given by 

4 

Introducing the  position-vector xe of t he  unperturbed p a r t i c l e ,  
4 

x = r  P e e r o  

where Pro, 2 

with the  disk, i . e . ,  

are  t he  r ad ia l  and azimuthal un i t  vectors ro ta t ing  eo 

+ 4 4  4 

one f inds for xe and for the  perturbed motion x = x + 6x, e 

and hence 

2 which i s  i n  agreement w i t h  6 2  = - W 6 r  because of (21) .  

we found fo r  s m a l l  perturbations can be wr i t ten  as 

The solut ion 

4 4  

x' = x + A (cos (cut + P )  Pro - s i n  ( w t  + P )  Pea). .. (23) e 
4 

By choosing a su i tab le  d is t r ibu t ion  of xe, A, B-values over the  

various pa r t i c l e s ,  the  Lagrangian var iables  may be eliminated between 

(22) and (23) and one obtains nonlinear waves i n  the Eulerian representa- 

t i on .  This w i l l  be done i n  Section 3. However, we have t o  convince 
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ourselves t h a t  the  terms neglected i n  t he  present subsection ( i . e . ,  

( 6 r ) 2  e t c . )  are  not of t h e  same order as the  nonlinear pa r t  of these 

waves. We shall. therefore proceed t o  solve the  system (10)-(12) 

exactly, and we s h a l l  see tha t  t he  nonlinear fea tures  of t h e  Eulerian 

representation have very l i t t l e  t o  do with the nonlinear terms of the 

Lagrangian representation. Thus, f o r  most purposes the above solution 

w i l l  be su f f i c i en t .  

(c  Large radial  osc i l la t ions  

The f irst  in t eg ra l  of 10  is  
3 

t h i s  leads t o  

'By t he  transformation r2 = u + ern/B, the  integrat ion gives 
2 m  2 r = - + (c -401 pe' /m3l1l2 s i n  u ( t  - to)]  a 

Denoting the  unperturbed value of c and E by ce and E respectively,  e 

and introducing f :  

E 'E f = - = -  
e Ee e 

2 r - f  
0 s i n  fi0 = 

( f2-&2 

8 = * J  d(wt + pio> 

2 
6 = P /mr now integrates  t o  8 

+ 8 '  

f + ~ $ - l  s i n  (u t  + % 

where 8 '  i s  a constant, and t h i s  gives 



. -  . _._.... - 

. ,  . 
I 

I . .  

and by e ( 0 )  = e o ,  

t g  ( e o  - e , )  = f t g  A2 2 +Jf2 - 1 

( 2 8 )  can a l s o  be wri t ten . .  
2 s i n  ( S + & + Y )  

cos (G + h) 
t g  (e - 0 ' )  = J 2 f  -1 2 2  

2 2  

2 where cos I' = f/ J21: -1. 

In  vector form, the equations of motion of a pa r t i c l e  a re  

I n  the following, we sha l l  have t o  distinguish between the 

starionary (-"laboratory"-) frame and the frame which is  f ixed i n  

the  unperturbed disk, i . e . ,  which ro ta tes  with uniform angular 

veloci ty  sd = w/2. 

frame w i l l  be denoted by A,B,C,. . ,Xo,Vo,. . . and the convective 

Vectors which a re  constant i n  the s ta t ionary  
4 4 4  4 3  

derivative in t h i s  frame w i l l  be denoted by D/Dt. Vectors which 

are  constant i n  the ro ta t ing  frame w i l l  be denoted by 
4 4 - 9  4 4  

a,b,c, ..., xOsvO, ... and the  convective derivative i n  tha t  frame by d/dt. 
4 

The posi t ion vector of a pa r t i c l e  w i l l  i n  general be denoted by x i n  

both frames, unless we have reason t o  emphasize t h a t  we wish t o  

consider the components of x in  the s ta t ionary frame in which case 

we s h a l l  use X. Similarly, any vector f which is  variable i n  both 

4 

3 

frames w i l l  i n  general have only one notation. The Cartesian axes i n  

the  s ta t ionary frame are  X,Y i n  the ro ta t ing  frame x,y; thus 
4 h 4 

x = x ?  X + y i y = x E x + y i  Y = X  

'The soiut ion of ( 3 0 )  i n  the s ta t ionary frame i s  of course the  e l l i p se  I 



I 

I .  

and by put t ing  i n  the  i n i t i a l  values 

w A COS ( - t  + a  ) i 2 2 2 P  

X ,Y one obtains 
0 0  

, t g c u 1 = - 2  IQx = (x? + 4 vox/w ) 2 1/2 

xo A1 

= (< + 4 voy/w 2 ) 1/2 , t g  a2 = - - 2 VOY 
A2 "T  

However, OUT purpose i s  t o  go over t o  the  Eulerian representat ion 

md for  that  the  ro t a t ing  franc i:: a Eore su i t ab le  s t a r t i n g  point .  

If 0 i s  of magnitude 0 and i n  the  d i rec t ion  of the  angular momentum 

of the  d isk  (+z direct ion,  since we assumed t h e  disk t o  r o t a t e  counter- 

clockwise), we have, f o r  any a, 

4 

4 

4 

and f o r  any var iab le  vector  f 

Df d f " "  
D t  d t  
- =  - + O x f f ,  

i n  pa r t i cu la r ,  

(here and i n  what follows, x denotes 
the  vector product) 

Using (34), we obtain from (30) t h e  equation of motion i n  the 

r o t  at  ing frame 

4 

where w = 

4 

" d x  r - = - w x -  d x  
d t  dt2 

2 0, and from th i s  

dx - = - w x x + c  
d t  

3 

4 
4 " "  

" 
where, according t o  OUT notation, c is  f ixed  i n  the  ro t a t ing  frame. 

(33) 

dx 
Taking the  las t  equation a t  t = 0, and using (32) t o  express (x) , 

t = O  
we f i n d  
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4 3  u ) 4  
c = Vo + 5 x xo 

4 4  

where xos v are  vectors f i x e d  i n  the  ro ta t ing  frame which coincide 
0 

a t  t = 0 with the i n i t i a l  conditions Xo, Vo of the pa r t i c l e .  c can 

further be re-written 4 4  

X v w  " >  c = u ) x ( -  + -  2 4 4  0 

2 w  

so tha t  if  we define 
4 4 4  

xo + 
2 

We obtain fo r  the equation of motion i n  the ro ta t ing  frame 
3 4 

4 

a replaces the  vector xe = r E 
di f fe ren t  from rePr: denoting by ? 

of subsection (b);  it i s ,  i n  f a c t ,  e r  
c 
ir the  polar u n i t  vectors ro' 80 

4 2 
associated w i t h  xo, and using voe = pe/mro = u) re /ro, 

V 
3 3  2 

4 r  or  c e :  - -  1 ) xu)  = - 0 - = -  (Voeleo + V P 1 VOX w 
u) 2 u )  or r o  2ro r o  u) 80 

2 
or  c = -  e + V  x - -  1 

r 

2 0  u) e o  
2r0 

3 

where r = IxoI ; thus 
9 0 
L 

4 V  o r  c 
r + l e  a =  ( - + -  

2 2 1 xo - w eo 
2r0 

The general solution of (36) can be written: i n  the form 
4 4  3 

x - a = b v ,  where b i s  a comt .  a d  

( 3 7 )  



FIG. -3 

0 i s  the center  of the (counter-clockwise) ro t a t ing  disk; 
4 - B  

a,xo and the x axis a re  fixed i n  the  disk,  P is  the  i n i t i a l  

pos i t ion  of the p a r t i c l e ,  which ro t a t e s  clockwise around the 

perburbation-center O', with angular frequency w = 2 0 (0 = 

r o t a t i o n  frequency of disk) .  

0 

1 r 



1 .  

i . e .  , 6 i s  a uni t  vector which ro ta tes  counter-clockwise, with angular 

frequency W ,  as seen from a Cartesian system P 

the  ro ta t ing  disk; i n  terms of t he  s ta t ionary frame we would have 

which is  f ixed i n  
x' Y 

w W 

v = cos ( -  - 2 t + B )  5 + s i n  ( -  Ft + B )  P Y 

We thus obtain the same type of motion as i n  subsection (b)  and 

Fig. 2 applies here as well. The only difference i s  tha t  now x does 

not ro ta te  about the  t i p  of xe = rc Pr but about t h a t  of ;, (37). 

The re la t ions  between the various unit-vectors and angles are  

3 

-3 * 

i l l u s t r a t e d  i n  Fig. 3. 

II.3.The perturbed motions i n  the N e r i a n  representation; kinematic 

nonl inear i t ies .  

Equations (38) (or (23) ) represented the motion of a pa r t i c l e  

which was by some cause perturbed from i ts  equilibrium posi t ion (which 

l a t t e r  i s  fixed i n  the rotat ing disk) .  The motion contains the four 

constants a ,  b and B which, so far, were a rb i t r a ry  (corresponding t o  

an a rb i t r a ry  choice of xo, vo ). I n  r e a l i t y ,  we w i l l  be interested i n  

perturbations produced on the pa r t i c l e s  by, e.g., an i n i t i a l  deviation 

from homogeneity of the density. The values of the constants a,b,B of 

4 

4 3  

3 

the  various pa r t i c l e s  w i l l  then be correlated by the e f fec t  upon them 

of t h i s  deviation from homogeneity and by the  f a c t  t ha t  t h i s  deviation 

w i l l  have some smooth functional form vs. posi t ion and time. 

In  "linear1' treatments it has been customary t o  concentrate i n  

par t icu lar  on, e.g., sinusoidal deviations from homogeneity; the 

response of the pa r t i c l e s  t o  t h i s  perturbation is ,  i n  i t s e l f ,  of 

r e l a t ive ly  qui te  complex nature and would produce a f'urther change i n  

* 
"+ 

We do not denote bv"' by b because i b  is r iub  curisbwii i r i  Li l t :  

ro ta t ing  frame. 
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the  f'unctional form of the density which i s  qui te  d i f fe ren t  from the 

or ig ina l  perturbation. However, one usually analyzes t h i s  response 

again i n  terms of sinusoidal functions. Although, through Fourier 

Composition, one i n  pr inciple  has the t o o l  f o r  controll ing a l l  

changes, i n  practice one looses t h i s  control again by the  neglect 

of higher order terms, Thus, a solution of the  form of Fig. 1, which, 

as we s h a l l  see,  i s  qui te  simple and na tura l  from the point of view of 

OUT analysis,  would be q u i &  inaccessible from a l inea r  treatment. 

Thus, we s h a l l  look in to  the system i t s e l f  f o r  the def in i t ion  of 

'hatural" f'unctional forms, i n  terms of which the analysis w i l l  be 

car r ied  out, ra ther  than imposing such forms a r b i t r a r i l y  from the  

outside. The f irst  s tep i n  t h i s  direct ion i s  by formulating simple 

modes which describe the waves of force,  veloci ty  anddensity, i n  an 

approximation which i s  of zeroth order i n  the  dynamical e f f ec t s  of 

these waves on the  motions of the par t ic les .  

To define such modes, we assume simple relationships between the  
4 

constants a,b,6 of d i f fe ren t  pa r t i c l e s .  

Since is  the  posi t ion vector of the  point of equilibrium about 

which the  perturbed motion of the  pa r t i c l e  ro ta tes ,  and since t h i s  

point i s  simply r e l a t ed  t o  the posi t ion of the pa r t i c l e  before the 

perturbation was "switched on", we s h a l l  assume tha t  we have t o  deal 

only with cases i n  which the  t i p s  of the  various a vectors a re  dis t r ibuted 

as the unperturbed density dis t r ibut ion,  O ( r )  of eq. (7), of the disk; 

fur ther ,  t ha t  t o  each pa r t i c l e  there  is  one a and vice versa, so  t ha t  a 

4 

4 -* 

may be taken as a s ingle  valued Lagrangian variable for the par t ic les .  
4 Second, we define f'undamental modes by choosing relationships b ( a )  , 
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3 3  

b(z )  = ak cos (k Ik x a1 ) 
3 

where k = k :  
z 

(39) 

Thus, different  modes w i l l  have d i f fe ren t  "wave numbers" k and 

"amplitudes" cYk. The u t i l i t y  of such a choice w i l l  depend on whether 

we s h a l l  be able t o  fulfi l l  a sui table  superposition process with such 

"modes", so t h a t  a general prof i le  can be resolved t h i s  way. We s h a l l  

see tha t  t h i s  is indeed the case. 

Taking (39) as one possible re la t ionship (other useful ones can 

eas i ly  be thought o f )  and assuming f irst  f o r  simplicity t h a t  B of 

eqtn. (38) i n  zero f o r  a l l  par t ic les ,  we may now use the equations 

of motion (36) i n  order t o  eliminate a from equation (38). 
3 

This 

w i l l  give us - the  Eulerian descri'ption of the k-th mode. 

g the  force per u n i t  mass (g here takes a s imilar  ro le  t o  tha t  of E i n  

Denoting by 
4 3 4 

Part  I): 

we obtain from (36) 
3 

Q 3 4  

a = x + 7  
W 

and hence from (38) and (39) 
2 3  4 4  

g ( x , t )  = - w b(a )  v^ 
3 3  

V (42 1 
W 

where no# 

3 3 

(42) implici t ly  defines the  f i e l d  strength g as a f'unction of x 

and t ,  i n  much the same way as (1%) did so f o r  E. To see the s imi l a r i t y  
3 

with Fig. I, we write 
- ~~ 

3 
*More generally, we may choose some f'unctional form B (a).  



c _  ~ -. I . . . .  . 

2 2 g2 
= k2 Ix + g212= k (r $-rl + cos (wt + e ) )  (44) 

W 0) W 

where we have used (see Fig. 3)  

cos 9 (x, -%I= cos 3 om'; 9 om' = B - w t  - e = - w t  - e 
W 

Thus 

= w2CY cos (f k d 2  + % + cos (wt + e j 
W W 

k 

2 t o  see the form of g, denote G = kg/W , R = kr, and $ = w t  + 8 ,  

and choose the + sign: 
1 

G = CY COS h2 + G2 + 2 RG COS $ 

One eas i ly  f inds  the following properties of G: 

(45 1 

(a)  For R = 0, G = CY cos G, which gives one solut ion as long as 

1.1 << IT but may be 2- or 3-valued when 1.1 approaches IT. 

Tr 
. (b)  G = 0 implies R = (2n + 1) - 2 f o r  some integer  n; however, 

R being of t h i s  form aoes not necessarily imply G = 0, i .e . ,  the  

curve G(R)  ( fo r  given #) need not pass through all points 

R = -  
n n IT 3 z, 5 2 ... on the abcissa. 2' - dG 2 

( c )  E = 0 implies e i ther  JR2 + G + 2 RG cos $ = 2n IT, i n  
7 7-- ------- 

f 2CYR cos $ 2 2  + CY which case G = f CY and one has h/R 

implies R + G cos $ = 0.  

= 2n IT, or  it 

Taking cos $ = 0, one obtains 

G=CYcos n R + G  

which i s  given i n  Fig. 4 fo r  the case of su f f i c i en t ly  s m a l l  CY ( s o  t h a t  

multivaluedness near R = 0 i s  excluded). We see tha t  f o r  l o w  n values, 

G resembles Fig. I, but as n increases the d is tor t ion  becomes less and 

less and the curve resembles an ordinary cos R more and more. 

These r e su l t s  can be generalized t o  the  case cos # # 0, and they 
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w i l l  be of the  same nature. 

Again,. the solution (42) can be generalized t o  
4 .+ 

4 4  4 4  

g(x , t )  = - W2 C CYk cos ( f lk  x x + I 
k W 

4 

Since t h i s  is  j u s t  a way of s ta t ing  tha t  the  M c t i o n  b ( a )  may be 

chosen a rb i t r a r i l y ,  the most general solut ion can therefore be 

wri t ten 

g ( x , t )  = - w2 f (“x + B2) G 
w 

(47) 

3 4 

where f ( S )  i s  an a rb i t ra ry  s c a l a r  function of 5 .  In t r ea t ing  dynamic 

nonl inear i t ies  within a certain approximation ( t o  be defined), the 

problem w i l l  reduce t o  t h a t  of finding, for given conditions, a sui table  
function f .  

However, we s h a l l  first obtain the  density d is t r ibu t ion  associated 

with the  mode. 

It i s  t o  be expected that  the density a(.) w i l l  be large 

wherever the slope of g ( r )  is large (see f ig .4) .  Indeed, the 

density i s  given by 

where oo is  the unperturbed density, given by ( 7 ) ,  and 

D =  

In  writ ing (48) we have assumed tha t  the d is t r ibu t ion  of the t i p s  

of the a-vectors is  as tha t  of the  unperturbed pa r t i c l e s  (and hence 

the  Jacobian between them i s  un i ty) .  

3 

n Anm;l.- I.* - - l - . . l - ~ - = , -  n- - uulA buursy uG LarLurabeu, A u r  iile ulvre general case (4-(j we 

obtain 



' .  

0 = Q  1 , i . e . ,  
0 1 + w2ffcos(wt + ea) 

( f '  being the derivative df'/da); for  the par t icu lar  mode (45), we 

obtain 

1 
0 = Q O  

1 - crk s in  ka cos(wt + ea)  

o!k s i n  ka cos ( w t  + ea )  
1 - Uk s i n  ka cos (W + ea) 6 0  = 00 

In  both (50) and (51) we have t o  think of a as expressed i n  

terms of x and g(x) ,  through (41).  When crk << 1, (51) can be 

expanded t o  f irst  order of ak; 6 0  then describes a sinusoidal 

perturbation of the  density which is obtainable a l so  from the  

l i nea r  analysis (e.g. r e f . (  ) ) .  

Wk 5 1. 

concentration (see f ig .5)  which occur a t  cer ta in  r ad ia l  distances 

The case of i n t e re s t  here is  

When crk M 1, (51) describes ltspikes" of large density 

. . . ) and a t  azimuthal angles which Tr 3rrz (approximately a t  - - 2k ' 2ky 2k 

f u l f i l l  cos ( W t  + ea) = 1. 

ea is close enough t o  0 (see f ig .3)  t o  describe the azimuthal 

Assuming Q t o  be suf f ic ien t ly  small, 

posi t ion of the spike by 8 = W t ,  i . e . ,  there is  - one spike on each 

n 3 r r  
2k' 2k' . . . and t h i s  spike ro ta tes  (clockwise) of the c i r c l e s  r = 

with angular veloci ty  - 0, as seen from the frame fixed i n  the disk 

(i .e. ,  the s ta t ionary observer sees the spike ro ta t ing  (clockwise) 

with angular veloci ty  - 5 ) .  W 
A s  seen i n  f i g .  5, the  spikes become l e s s  

and l e s s  sharp the f'urther they are  from the center of the disk; 

eventually they w i l l  degenerate in to  an ordinary sinusoidal perturbation. 
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11.4. Typical features of dynamical nonl inearar i t ies  

In  t h i s  section we sha l l  i l l u s t r a t e  some typica l  circumstances 

which a r i s e  when the e f fec t  of the perturbed densi t ies  on the motions 

of the pa r t i c l e s  is taken into account. This e f fec t  r e s u l t s  i n  what 

was called,  i n  section 1, a "dynamical" nonlinearity, whereas a 

"kinematical" nonlinearity (which is the only l i n e a r i t y  present i n  a 

one-dimensional plasma) is the r e s u l t  of the  bunching up of perturbed 

pa r t i c l e s  which move under the grav i ta t iona l  influence of the unper- 

turbed density . 
To obtain an understanding of pr inciple ,  we s h a l l  assume t h a t  

the i n i t i a l  perturbation of the pa r t i c l e s  was l imited t o  a su f f i c i en t ly  

t h i n  ring r < r < r2, so that  only one of the spikes (the sharpest 

one, say) discussed towards the end of the preceding section, w i l l  
1 

be present. We a l so  assume k a w  1 so tha t  the spike is su f f i c i en t ly  

narrow t o  be considered as  a mass-point Q, of t o t a l  mass CL, say. 

I n  the frame moving with the  disk, both the spike Q and a 

typ ica l  p a r t i c l e  Po a re  seen t o  ro t a t e  clockwise with angular 

veloci ty  u), as long as P i s  not yet accelerated by Q. Q ro t a t e s  

about the center 0 of the disk, Po ro t a t e s  about the t i p  0' of i ts  

(as  yet unperturbed) :'-vector (see f ig .6) .  

rotat ions t o  be i n  phase, it is easy t o  see from f ig .6  tha t  the 

l i n e s  QIPi , Q2P2, ... 
through a f ixed point S and tha t  

0 

If one chooses both 

- 
0 through corresponding posit ions all pass 

Q( t )Po( t )  : Po( t )  S = c 

where dc/dt = 0. 
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Therefore, the gravi ta t ional  - a t t rac t ion  

Po& 

Q pa3 

2 "so 
Q 2 3  

F = Q -  

exerted by the spike on Po (per uni t  mass) can be wri t ten 

F = @ c  - (53) 

In other words, F can be replaced by a repulsive force coming Q 
from S, again with an inverse-square l a w  and with an effect ive "charge" 

g = Qlc 2 (while the "charge" a t  P is assumed t o  be one). 

If the two rotations are not i n  phase, essent ia l ly  the same 

r e s u l t  can be obtained, w i t h  a somewhat more complicated geometry. 

To f ind  the perturbing ef fec t  of F on the P"-motion, we Q 
decompose the vector equation (53) in to  a component i n  the direct ion 

-0 SP and one perpendicular t o  it, We denote the t rue  (i .e., perturbed) 

posit ion of the pa r t i c l e  by P, and 
- 4  

pop=  6 s  1 
0 - -+o -c1 

SP = s ,  

SP = s = s  + 6 s  -'o - 4 -' 
(54) 

and from the geometry of f ig .6  (see the broken l i n e s )  we conclude that  

--m 4 

(55) 
p - c r  -3 

0 's = Q a = ca 

(p is  the distance of the spike from 0, while CY - according t o  

(42) - i s  the distance of Po from 0 ' ) .  

If x denotes the vector OP , 
x = ( l + e ) a + s o  

-?O -0 

- 3 4  -'O 

4 

Hence the equation of motion of Po, (36c), can be wri t ten i n  terms of so 

To th is  equation we now have t o  add the force F Taking F to Q' Q 
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2 
zeroth order i n  6s, one obtains the equation of var ia t ion (with q=Gpc > 0 )  

To th i s  equation we now have t o  add the force F Taking F t o  Q' Q 
zeroth order i n  6 s ,  one obtains the equation of var ia t ion 

(with Q = Gpc > 0) 
2 

d26 2 -' ;O(t) - + w  6 s = q  
dt2 

and t o  first order (expanding (;' + 6 z ) / l S o  + 6 S l  3 ) 

- d26 + (w2 - 6; + 34 - 
dt2 I 

Equation (58) is  simple t o  solve: The component of (58) i n  the 

40 direct ion s is of the form 

2 6 iU + w 6Sll = f ( t )  

(59) 

whose solution is (with a rb i t ra ry  constants A,@) 
t 

= &SdTsin W (t - T ) f ( T )  + A cos ( W t  + B )  6sll w (61) 
0 

-'O 
and the component i n  the direction perpendicular t o  s is simply 

6 s  B cos ( U t  + Y )  I 
w i t h  a rb i t r a ry  constants B,y. More interest ing f o r  the typ ica l  

nonlinear phenomena of the disk i s  the next order - equation (59): 

The important component of (59) i s  the one i n  the direct ion of s , -'O 

it s i  (dropping thell f o r  convenience) 

1 6; + (w2 + 29- ) 6 s  = f ( t )  
I SO1 

The cruc ia l  point about t h i s  equation is  that the eigenfrequency- 

squared, w 2 .  , nas been suppieiiierii&i by ;i p ~ l t i v e  t c r i i i  xlilch, t h r ~ ~ g l i  

0 s (t),  is periodic (with frequency W ) .  Thus, (62) is  of H i l l ' s  type, 



and the delineation of regions of s t a b i l i t y  and i n s t a b i l i t y  of i t s  

family of solutions depends sens i t ive ly  on the value of g (see,  e.g., 

( 

disk whose c i r cu la r  perturbation motion (as seen from the ro t a t ing  

d isk)  w i l l  be merely perturbed somewhat fu r the r  by the spike i n t o  a 

nearby "apple-shape" ( f ig .6) ,  there  may be others (those nearest  t o  

the  spike) which w i l l  be t h r m  out of o rb i t  a l together .  

of a Eulerian representation, t h i s  i n s t a b i l i t y  - which contains 

features  which a re  above and beyond those predicted by a l inear ized  

analysis  i n  the Eulerian representation - can again be obtained 

) )  . This means that while there  may be many p a r t i c l e s  of the  

I n  terms 

using the  general  approach of sect ion 3. One eliminates the 

Lagrangian constants of motion between the  solut ion and the  equation 

of motion, and one obtains the nonlinear waves i n  the  densi ty  by 

calculat ing a su i t ab le  Jacobian. The problem of t r e a t i n g  dynamical 

nonl inear i t ies  is  hereby formulated, a t  l e a s t  f o r  the case of sharp 

spikes (which is  the  case of most i n t e r e s t ) .  

problem i s  a chapter i n  i t s  own r igh t  and w i l l  be pursued i n  another 

paper, w i t h  C. Cuvaj . 

The solut ion of th i s  
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Appendix : The poss ib i l i t y  of s p i r a l  solut ions 

To see tha t  nonlinear solutions of the  type (42) may describe 

also s p i r a l  waves, we need only re-include the  Lagrangian constant B 

which was dropped from equation (38). we may choose any 

function B(e ), since ea  (see f ig .3 )  i s  a Lagrangian constant. 

For 

In  a 

par t icu lar ,  we may choose 

B(ea)  = - m 8 = - m 9 - m e'' 
a 

where m is  an integer and, as i n  section 3, e'' can be assumed t o  

be small compared t o  6. This gives a wave i n  the f i e l d  s t rength 

which is of the form 
2 1 

g ( z , t )  = - W2Q cos [k(r2 + % + cos ( W t  + - m 6 - m e"] 
W W 

For su f f i c i en t ly  small CY, t h i s  is  of the form 

g = - w2 a cos (k  r - m 8 )  

which is c lear ly  of the  s p i r a l  type. In  the more exact form of g, 

t he  appearance of the  term m 8 can be seen t o  lead t o  a s imilazly 

spiral behaviour, although more complex, as long as 8'' i s  not 

comparable with 6 ( i n  which case the  p ic ture  given by f ig .4  breaks 

down anyway, since then the  many-valuedness mentioned i n  connection 

with (45) s e t s  i n ) .  
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